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A THEORETICAL INVESTIGATION OF LONGI!CUDINAL STABILITY OF AIRPLANES WITEl FREE 
CONTROLS INCLUDING EFFECT OF FRICTION IN CONTROL SYSTEM 

By HARRY GEDENBEEQ and LEONABD STERNFIELD 

SUMMARY 

The relalion between the elemtor hinge-mom& parameters 
and the control forcesfor changes in joruxzlrd speed and in mm- 
vers is s h m  for several duea o f  st& stability and elmztor 
mass balance. 

The st&@ of ths s h d T & d  oscdh thns  is s h m  as a 
series of boundaries giving the limb of the stable region in 
t e r m  of the elemtor hingemment paranzeters. The &e& 
of stdic stab%&, elemtor monzerrt of i d ,  elemtor m s  
mbalunce, and airplane den&@ are also wmidmd. Dpamie 
i n s t u l d ~ y  is likely to occur if there is m a s  unbalance of the 
elenator control system combined with a smaU restoring ten- 
dency (high aerodynamic balance). This instability can be 
prevented by a rearrangement of the unbalancing weights which, 
hmeaer, involves an increase of the amount of weight necessary. 
I t  can also be prevented by the adddion of wiscous j&&n to 
the elemtor control system p r o w  the airplane center of 
grauify is not behind a certain critical position. 

For high d u e s  of the d m d y  parameter, which c m e s p d  
to high &dudea of$ight, the addidion of modetete amounb of 
iriscous friction may be destabilizing even w h  the airplane is 
staticdy stable. In this case, increasing i%e wiscous friction 
makes the oscillation stable again. The CondifiOn in whieh 
Discowr friction cawa dynamic insM% of a statically stable. 
airplane is limited to a &$n& range of hinge-momd param- 
eters. I t  is shown that, when viscous friction cawes increas- 
ing o s & h ,  sola friction zuiu produce steady osciaadions 
hatring an ampldude proportional to the amount o f  friction. 

INTRODUCTION 
Tho effects of aerodynamic balance and mass unbalmce 

of the elevator on the dynamic stability of the airplane are 
discussed in a previous report on control-free stability (refer- 
ence 1). It was found theoretically in reference 1 and verXed 
in flight (reference 2) that, if the elevator is too closely 
balanced aerodynamically and has a sufEcient amount of 
mass unbalance (which tends to depress the elevator), in- 
creasing oscillations of short period may occur. Other flight 
tests (reference 3) showed, however, that mass unbalance of 
the elevator control system improves the static stability of 
an airplane, that is, increases the slope of the curve of stick 
force against speed in level flight and of the curve of stick 

0 

force against normal acceleration in maneuvers. Subse- 
quent work (reference 4) has indicated t h t  a control surface 
with positive floating tendency (tendency to float against 
the relative wind), when used as a rudder, is effective in im- 
proving control-free static stability. A theoretiml analysis 
(reference 5) showed that a rudder having a positive floating 
ratio may, under the influence of solid friction in the control 
system, build up steady oscillations of the airplane and 
rudder. These steady oscillations have been observed in 
flight tests (reference 0). These results suggested an investi- 
gation of the behavior of an airplane equipped with an 
elevator having a positive floating tendency. This type of 
elevator was not considered in any of the previous investi- 
gations. 

The purpose of the present report is to  make a theoretical 
analysis of the control-free longitudinal stability of an air- 
plane, which takes account of this current trend toward a 
positive floating tendency in control-surface design and 
covers, in general, a much wider range of parmeters than 
the investigation of reference 1. These parameters include, 
for the elevator control system, restoring tendency, floating 
tendency, mass unbalance (bobweight control), moment of 
inertia, and viscous and solid friction and, for the airplane, 
density and center-of-gravity position. 

The method of analysis of dynamic stability is based on 
the classical theory of Bryan and Bairstow extended to  in- 
clude movements of the controls and their couplings with 
the airplane motions. Friction is treated in the same way 
aa in the approximate method of reference 5,  in which solid 
friction is replaced by an equivalent viscous friction. 

Before the analysis of dynamic stability is presented, some 
discussion is given of the effect of the various parameters on 
the elevator forces for trim and for acceleration-charac- 
t&tics considered important to flying qualtities. The 
stability of the short-period oscillations, with and without 
friction in the control system, is then considered. The effects 
of weights added to the system to modify the static and dy- 
namic stability are discussed. The trends to be expected 
are illustrated by a series of calculations and charts based 
on a typical airplane. The stability of the long-period 
(phugoid) oscillations is not discussed because of its relative 
unimportance. 
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SYMBOLS 

At0 wing aspect ratio 
A, tail aspect ratio 
A, B, C, E, F co&cients in stability oquntion 
6 wing span 
c;, elevntor hinge-moment coefficient 

frictional hinge-moment coefficient 

applied hinge-moment coefficient 

airplane lift coacient - 
lift coacient of tail 
pitching-moment coefEcient about clirplane 

canter of gravity 
wing chord 
elevator chord 
differential operator 

constant term in stability equation 
stick force; positive for pull 

stick-force gradient in maneuvers (2) 

E) 

( d )  

stick-force gradient for level flight (dF1> 
9 acceleration of gravity 
H 

ab 

Hi 

Hf frictional hinge moment 
E,=E,+rE, 

hinge moment; positive when tends to de- 
press trailing edge 

mass moment of elevntor nbout its hinge; 
positive when tailhenvy 

mass moment of control stick about its pivot; 
positive when stick tends to move forward 

moment of inertia of elevator about its 
hj,, 

moment of inertin of control stick about its 
pivot 

radius of gyration of airplane about Y-axis 

distance between airplane center of grnvity 
and elevator hinge 

11 
1u 

m 
N I R  . 

n 

1 
AV 

U = T  

V 
AV 
w 
X 
%.e. 

- 
8 

r 

8. 

t 

e 

x 
l , T  
P 

P 

length of control stick 
pitching moment about nirplano center: of 

m a s  of airplane 
number of cycles required for oscillation to 

damp to  half amplitude 
normal acceleration per g of airplano duo to 

curvature of fight path; accelerometer reacl- 
ing minus component of gravity force 

gravity 

period of oscillation, seconds 
dynamic pressure 
elevator area 
tail arm 
wing aren 
distance in half-chords (2Vt/c) 
time required for oscillation to damp to linlf 

time 
amplitude, seconds 

forward velocity 
change in forward velocity from trimmed vnluo 
weight of airplane 
longitudinal force; positive forward 
distance of center of gravity from aerodynn- 

mic center; positive when center of grnvity 
is &end of aerodynamic center 

normal force; positive domward 
angle of attack 
angle of attack at  tail 
deflection of elevator; posi tivo for downwnrd 

amplitude of elevator oscillation 
angle of domwash 
control gearing @,/8,) 
angle of pitch of airplane 
deflection of control stick; positivo for for- 

ward motion of stick 
complax root of stability equation 
real and imaginary parts, respectively, of A 
airplanedensity parameter (m/pS&) 
mass density of air 

motion of trailing edge 

Whenever u, V, a, at, e, 8, Da, DO, Da, nnd Dza aro used 
as subscripts, a derivative is indicated. For ammple, 

Whenever a dot is used abovo n ach -ms* ax xv=m and ohD,- 

symbol, it denotes d8erent.intion with respect to t h o .  
All angles &re measured in radians. 

METHOD OF ANALYSIS 

Four degrees of freedom-forward speed, angle of attack, 
anglo of pitch, and elevator deflection-are generally in- 
volved in the problem of control-free stability. To oach 
degree of freedom, there. corresponds nn equation of equilib- 
rium between inertial and aerodynamic forcea or moments. 
By use of mind %xes, tho four equations become, for level 
flight, 
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XyAV+ X,CY 

ZvAV+ Zau 

+%O =mAV 

=?nV(a- e)  

-2AwQ0 
=O I 
=o 1 
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In applying equations (1) to dynamic stability, certain approximations may be made. For instance, short-period oscil- 
lations (of the order of 1 sec) involve negligible changea in forward speed, which may therefore be neglected in studying the 
short-period oscillations. In fact, the period and damping of these oscillations can be obtained to ahigh degree of accuracy 
by using only the lnst three of the equations (1) and setting u=O. 

Equations (1) then become 

By setting 

The resulting stfibility equation may be written as 
AX4+BX3+ cX2+EX+F=0 

where A, B, C, E, and F are functions of the stability derivatives. 

The study of the effects of different parameters on the 1 of damped oscillations and 
control-free-stability was made by a series of computations 
for an average airplane having the characteristics given 
hereinafter. The current trend toward a positive floating 
tondency in control-surface design suggests the use of c h a f  and 
Oh, ns the fundamental variables to be used in expressing 
stability and control characteristics. The results are pre- 
sented ns a series of +es that show the relations betmeen 
OB,, and a h a  which, with the other derivatives k e d ,  satisfy 
the conditions for neutral dynamic stability and neutral 
static stability. 

A curve for neutral dynamic stability is the boundary 
dividing the region of increasing oscillations from the region 

=O 

(3) 

is obtained from Routh's 
discriminant 

The condition for neutral static stability is that 
BCE-Ah2-BF=0 

F=O 
The stability equation (3) has four roots. A pair of 

complex roots indicates an oscillatory mode and a real root 
indicates an aperiodic mode. The real part of the complex 
root determines the damping; the imaginq part determines 
the period of the oscillations. More specXcally, if there is 
a pair of complex roots 

X=E*-iv 
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-0.232 

.Ea 
0 

the period in seconds is given by 

crln:ii;;n of 
meanwbg 
OhOrd) 

0.06 
0 -. a5 

c 2 x  
p=my 

and the time in seconds to damp to half amplitude is given by 

c 0.693 
T l D =  -mf 

For an airplane at constant speed, there may be two 
oscillatory modes, there may be only one oscillatory mode, or 
the motion may be entirely aperiodic. In c88es in which 
there are oscillatory components, one of the oscillations may 
be poorly damped and even become unstable. 

The average airplme on which the calculations of this 
report are based is of conventional design. The char- 
acteristics of the airplane are 

by varying them one at  a time, through a range of values, and 
showing for each parameter a series of stability boundaries. 

The size of the airplane, wing loading, and altitude are 
m combined in the parameter p ,  which is -* A variation 

P & J  
in p thus could be due to  a variation in sue, wing loading, 
or altitude, or any combination of these. The range of values 
of p covered in the present report and some typical correspond- 
ing values of wing loading, altitude, and size are given in the 
following table: 

I I I I I 

The range of Cma and the corresponding center-of-gravity 
positions are as follows: 

The ranges of values of the other parameters, for a small 
airplane (chord, 7 ft) ,  me as follows: 

I I I 
Moment of 
inertia of ele- 

6 

0 
10 

Stlok force Ob) 

STATIC STABILITY AND RELATION TO CONTROL FORCES 

The connection between t.he static stability and tho 
airplane and control parameters is established to assist 
in the interpretation of the results obtained hereinafter. 
Equations (1) can be applied to static stability by setting 
all terms containing D and 02 equal to zero and solving tho 
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resulting equations simulheously -for the variation in 
forward speed with an applied elevator hinge moment. 
For level flight, 6' is also zero and the resulting equations are 

= O  C&+T 'La  a 

Solving gives 

If effects of slipstream on the tail are neglected, C-=O. 

As shown in appendix A, C".=-~A,~- h C ~  Inserting these 

values in the expression for C;du shows that F, is independent 
of forward speed. 

The variation of control force with normal acceleration in 
a steady pull-up, with no change assumed in forward speed 
(see reference 81, can be found from equations (2) by equating 
to zero all terms containing D except DO. This procedure 
implies that the normal acceleration is due entirely to 
curvature of the flight path DO. The equations become, for 
m applied hinge moment, 

a-2AmpDO 2 = O  

from which 

If the normal acceleration is ng, 

and 

w DO=--- 2v4 

1 
O h ,  3 Pvps&a dF, F=-=- 

dn 2 VPDO l,r 

-__- 0% P & w  - 
DO 4 1 ~  

These formulas for F, and F, are equivalent to equation (1) 
of reference 9 and equations (27) and (28) of reference 10. 

Tho formulas indicate that the stick-force gradients F, 
and F, are dependent on most of the aforementioned airplane 
and elevator pnmmeters. Figures 1 to 5 show the variation 
of these stick-force gradients with the parameters c h a t )  o h , )  

U,,, h, and p. The gradients &re independent of speed, 
although only within the limits of the assumptions made in 
the analysis, namely, neglect of power m d  of compressibility 
effects. The gradient F, can be used to get the stick force 
for only a small change in forward speed because the stick 
force is not directly proportional to the change in speed. 
The stick force in a steady pull-up F,, however, is propor- 
tional to the normal acceleration provided the control de- 
flection is not so great that the basic assumption of linearity 
is violated. 

The line F,=O is the boundary for true static stability- 
that is, F,,=O is the condition for zero variation in stick 
force with forwnrd speed in steady flight. This condition 
is the same as that obtained by setting F=O, where F is 
the constant term of the sixth-order stability equation 
obtained fkom equations (1). On subsequent figures it is 

called the divergence boundary. The line F,=O is the 
boundary for apparent static (or maneuvering) stability and 
is the condition for zero variation in stick force in a steady 
pull-up. This condition for F,=O is obtained by setting 
F=O in the approximate stability equation (equations (3))) 
which is for three degrees of freedom (a, DO, and 6,). On 
the unstable side of F,,=O, a slow divergence occurs that is 
noticed by the pilot as an unstable variation of stick force 
with forward speed. The stick force due to normal accelem- 
tion in 8 pull-up is stable, however, unless t,he conditions are 
such that the airplane is operating on the unstable side of 
F,,=O. 

Figures 1 to 5 indicate that the parameters have the same 
effect on F, and F, except that the altitude d e c t s  only F,. 
They show that the stick-force gradients on an airplane of 
given tail size and center-of-gravity position may be in- 
creased by making the floating tendency chat more positive 
or by mass unbalancing the elevator control system to 
depress the elevator (make it tailheavy). The effect of the 
restoring tendency c h ,  on the stick-force gradients depends 
on the relative position of the center of gravity and the 
aerodynamic center. If the center of gravity is ahead of 
the aerodynamic center (airplane stable with controls fixed), 
increasing the magnitude of Cb, increases the stick-force 
gradients. If the center of gravity is behind the aerody- 
namic center, this effect on F,, is reversed; the effect on F, 
is not reversed, however, until the center of gravity is well 
behind the aerodynmnic center (in this case, about 0.05~ a t  
sea level and 0 .02~  at >O,OOO feet). If Cad=O, the stick 
forces are independent of the position of the airplane center 
of gravity. 



Resfmng terkjexy, C, 
Frowr l.--Mm force F .  and pull-up form P. as functions of-moment parameters. 

rrr=ON ~-4poundspersqquarefoot; ~-7feet;sealerel P.-stlck force In ponndsfor 

$!-1.0; F.-&k fonm In pouch per p normal acceleratfon. 

TY 



Pioum L-Wm form 3'. M d  pull-up form F. FIE functlona of hlngo-momont pammotors. 

1..~.=-0.0.5q E-40 pounds por sqm fwt; ~-7feot:mlevol.  F.-dlok fora, In pounds 
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Increase in altitude d either increase or decrease F,, 
depending on the hinge-moment parameters. The solid 

F, is independent of altitude. For points to the left of this 
line, F, decreases with altitude; for points to the right of 
this line, F. increases with altitude. This line is determined 
by the relation 

h e  in 5 is the lOCUS Of  Values Of  chat and ch6 for which 

which, for the case of figure 5, becomes 

Another method of increasing the stick-force grndient in 
level flight F, consists in applying a constant hinge moment 
to the elevator by means of a spring or bungee. The effect 
of the spring on the gradient F, is due to the derivative 
Ch, which depends in the same way on the constant hinge 
moment, whether it is caused by a weight or by a spring. A 
bungeo, which tends to depress the elevator, d therefore 
incrense the stick-force gradient in level flight Fa. The 
effect of the bungee on the stickforce gradient in accelerated 
flight Fa will be zero because its action depends solely on 
changes in forward speed. Its effect on the short-period 
oscillations d be zero for the same reason. 

DYNAMIC STABILITY 
NO FRICTION IN CONTROL SYSTBX 

The stability of the short-period oscillations without 
friction is shown in figures 6 to 11, which also show the 
boundaries for true static stability (divergence boundaries). 
Figure 6 is an example of a more nearly complete presentation 
of the stability data than subsequent figures because it 
shows the variation of damping and period of oscillation 
with the hinge-moment pmameters c h a t  and Oha for certain 
Lyed values of the other parametem. The damping, which 
is proportional to (, increases with the magnitude of Cba. 

1 The period, proportional to  -, decreases as Cam, increases. 
tl 

Another may of presenting this additional stability data is 
shown in @e 7, which gives the number of cycles the oscil- 
lation performs before it damps to half amplitude. It is 
clenr from figure 7 that the oscillation is very well damped 
unless the restoring tendency is close to zero). In this parti- 
cular case, only one oscillatory mode exists. Inasmuch as 
there are only three roots in this case (because is and i l=O) ,  
the other root is always real and is of no particular sign& 
cnnce in dynnmic stability. In cases in which an additional 
oscillatory mode exists, it is always stable. 

The effect of center-ofmvity position on the stability of 
the short-period oscillations is shown in figure 8. The shift 
in the dynnmic-stability boundnry, for the comparatively 
large shift in center of gravity shown, is practically negligible. 

iMany of the subsequent figures, in which zero static stability 
is assumed to facilitate computation, therefore are valid for 
airplanes having a margin of static stnbility. 

The effect of moment of inertia of the elevator control 
system on the dynamic stability is shown in figure 9, which 
gives typical values of the moment of inertia. The offect is 
slightly destabilizing especially for high vdues of c h a t .  Tho 
destabilizing &ect of the moment of inertia of the elovator 
is greater than that of the moment of inertia of the control 
stick. Because the accuracy gained by including momont 
of inertia is small compared with the saving in labor gainod 
by neglecting it, moment of inertia of the elevator control 
system was set equal to zero in the subsequent calculation. 
As a result, the stability equation becomes a cubic and sub- 
sequent figures are somewhat unconservative. 

The effect of density parameter p on the dynamic stability 
is shown in figure 10. Increase of I* has a slight destabilizing 
effect. 

As has been shown, mass unbnlanco of the olevator control 
system improves the static stability (fig. 4). The d o c t  on 
d y n e ’ c  stability is unfavorable, however, aa shown in 
m e  11. The value of mass unbalance shown corresponds 
to a bobweight that is located a t  the nirplano contor of 
gravity and requires a balancing pull of 37 pounds on the 
control stick of a pursuit airplane at sea level. Incronsing 
oscillations occur if the aerodynamic bdance is too high 
(low magnitudes of Cba), especinlly for negative values of Cha. 

The effect of the location of the bobweight is shown in 
k u r e  12. Each curve represents a different arrangement 
of bobweights and nll arrangements give the snme stick 
force. The solid line corresponds to a weight at  tho air- 
plane center of gravity (for pmctiml purposes, at  the control 
stick). The ahort-dash line corresponds to a weight at the 
elevator. The long-daah line corresponds to two weighta- 
one st the elevator, which tends to make it noseheavy; the 
other at  the control stick, which gives the elevator a SUE- 
ciently powerful tailheavy momont that the resultant stick 
force is the m e  as with the single weight. In  the particu- 
lar cnse represented, the nosahenvy moment due to the 
weight at the elevator is equal to the tailheavy moment due 
to both weights. Moving the single weight fmm the con- 
trol stick to the elevator has a large destabilizing offect. 
Overbalancing the elevator while the stick’ force is kept 
constant has a considerable stabilizing effect. This method 
of preventing instability has the disadvantage, however, of 
increasing the total mount  of unbdancing weight required. 
In the case shown, the weight is increased to three times ita 
original size. Another disadvantage is the rearward shift in 
center of gravity of the whole airplane due to additional 
weight a t  the elevator. (See airplane parametem givon in 
“Method of Analysis.’)) The destabilizing effect of tho in- 
creased moment of inertia associated with the added weights 
was found to be very smnll, especially for negative floating 
tendency . 
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EFFECT OF VISCOUS FRICTION IN CONTROL SYSTEM 

In  the preceding section, a constant value of the elevator- 
d u p i n g  parameter C h D a  was assumed. This value was due 
only to aerodynamic damping. The effects of viscous fric- 
tion in the elevator control system are obtained by consider- 
ing UADa i ~ 8  an additional variable. This variable can be 
introduced, ns in the preceding section, by showing a series 

ChDa. The general nature of the effect of friction is shown 
first, however, by presenting boundaries in the c b a c h D a  

plane with O h a t  constant and some other parameter varied. 
This method of presenting stability boundaries makes it 
ensior to show the effects of other parameters such as air- 
plane. center-of-grnvity position and density when friction 
is introduced. 

Tho effect of viscous .Kction on the dynamic stability, 
for various conditions, is shown in figures 13 and 14 for 
p'12.5 and p=37.6, respectively. Figures 13(a) and 14(a) 
refer to  the mass-balanced elevator control system; figures 
13@) and 14@) refer to the tailheavy elevator control 
system considered in the preceding section. It is shorn that, 
if the airplane center of ,gravity is ahead of a certain point,' 
the instability caused by the unbalanced elevator can be 
removed by adding viscous friction to the control system. 
This critical center-of-gravity position is behind the nero- 
dynamic center, and its distance from the aerodynamic 
center decreases as the density parameter p increases. 
When the center of gravity is behind this critical position, 
viscous friction has a destabilizing effect. These opposite 
eff ects of viscous friction are shorn in the c h a r  c h a  plane in 
figures 16 and 16. When the center of gravity is shghtly 
ahead of this critical position, the effect of viscous friction 
depends on its magnitude and also on the value of 4,. The 
addition of a smU amount of viscous friction is destabi- 
lizing but larger amounts are stabilizing. If the aerodynamic 
balance is sufficiently high ( c b ,  =O)  and the viscous friction 
lies in a certain range, increasing oscillations d occur. 
In figure 14@), for example, if x~.,.=-O.Olc and Cha=-0.05, 
the oscillations will be unstable when the elevator-damping 
parameter is in the range from -2.5 to -76. If Cha is 
mom negative than -0.086, no amount of elevator damp- 
ing can cause increasing oscillations. As the center of 
gravity move8 forward, the destabilizing effect of elevator 
damping becomes less and finally disappears. 

The effect of the density parameter p can be seen by com- 
paring figures 13 and 14. The critical center-of-gravity 
position approaches the aerodynttmic center as p increases. 

1 Sbca tbh report wm wrlttm, thls poht has been found to be where ~ 4 ,  sometimes called 

Of boundaries in the c h a 1 c h 6  plane for vmious V d U e S  Of 

da 
the Stlck-Dxed manouvm polnt. 
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When r--12.5, elevator damping always hag a stabilizing 
effect provided is positive. When p=37.5, elevator 
damping may be destabilizing over a small range of OhD,  

and c h a  even when 
When the center of gravity is slightJy ahead of the afore- 

mentioned critical position (which is behind the aerodynamic 
center), the conditions under which elevator damping may 
cause dynamic instability may be advantageously repre- 
sented in the c h a t c h a  plane. If a series of stability boundaries 
are dram in that plane for various values of elevator damp- 
ing, they d all be confined to a region bounded by a line 
that d be called the boundary of complete damping. An 
illustration of two methods of constructing this boundary is 
given in figure 17. Lf a series of boundaries in the c b a z ~ h a  

plane are dram for various values of the damping, the com- 
mon tangent of all these curves is the boundary for complete 
damping. This boundary can also be dram by plotting tmhe 
minimum values of c h a  obtained from plots of the type shorn 
in figures 13 and 14 against corresponding values of Gnu,. 
The region in the C h a 1 c h a  plane between the boundmies for 
complete damping and increasing oscillations is the region 
where the addition of viscous friction to the elevator control 
system may cause dynnmic instability. 

That a boundary for complete damping cannot bo shown 
for p=12.5 if the airplane is statically neutral or stable (z..~. 
is zero or positive) may be seen from figure 13. It is possible 
however, to  show a boundary for complete damping under 
theso conditions for p=37.5. Fi,gre 18 shows these bound- 
aries for X . . ~ . = O  and for the critical vdue xa,.=-0.017c, 
for both a mass-balmced elevator and a mass-unbalmced 
elevator. The boundaries for increasing oscillations and 
divergence are &o shown. For the case of the mass-bdanced 
elevator (A=O), the boundary for complete damping is a 
straight line through the origin and therefore corresponds 
to a firred ratio of the floating and restoring tendencies, 
or floating ratio. Elevator mass unbalance decreases the 
region of complete damping. 

is positive (0.05~). 

EFFECT OF SOLID FRICTION IN ELEVATOR CONTROL SYSTghI 

The boundary for complete damping has an important 
bearing on the effect of solid friction on dynamic stability. 
In order to  calculate this effect, the solid friction is replaced 
by an equivalent viscous friction that would dissipate energy 
at  the same rate. This condition gives an equivalent 

(4) 4 Cn, c =-e 
ba 'K 76 

for a sinusoidal motion of the elevator with Bmplitude 
angular frequency 7. 

and 
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It can be shown that if viscous friction is destabilizing, as 
in figures 16 to 18, solid friction may lead to steady oscilla- 
tions having an amplitude proportional to the amount of 
friction. Suppose an oscillation is started with amplitude 
and frequency whic.h result in an equivalent c h m  that would 
cause increasing oscillations. Let this condition be repre- 
sented by point 2 in figure 19. The amplitude of the oscil- 
lations would then increase until the equivalent ChD, de- 
crensed to the value that would result in neutrally damped 
oscillations, represented by point 3 in figure 19. If the 
initial amplitude is so low that the equivalent viscous fric- 
tion is in the stable region, as shown by point 1, the oscillac 
tions d die out completely. If  the initial amplitude is so 
high that the oscillations me stable, represented by point 4, 
the amplitude d l  decrease until it reaches a constant value, 
when the equivalent Chm is again represented by point 3. 
The value of CbD, at point 3 then determines the amplitude 
of the steady oscillations. By solving formula (4) for the 
amplitude of the steady oscillation is obtained as 

&- 4 Chf 
r q  

vihere t] and Cam are the values at point 3. This formula 

0 

shows that the amplitude is proportional to the amount, of 
solid friction. 

The foregoing analysis shows that the region in the o h a t c h 8  

plane between the boundary for increasing oscillations nnd 
the boundaq for complete damping is the region whore 
steady oscillations may occur bemuse of tehe influonco of 
solid friction in the control system. All the remada in the 
preceding section concerning the boundary for complete 
damping with viscous friction consequently apply to the 
boundary for steady oscillations with solid friction, inasmuch 
as these two boundaries are the same, within the limits of 
the assumptions involved in the use of the concept of equi- 
valent viscous friction. Steady oscillations due to  solid 
friction d not occur on a statically neutral or stable air- 
plane, for instance, unless p is very large (corresponds to CL 

high altitude). Even in that case, the possibility of steady 
oscillations exists only for a comparatively s m d  range of 
floating ratios. If the airplane is statically unstable by a 
suf5cient amount, however, steady oscillation may exist 
over the entire range of floating ratio. 

Some calculations of the amplitude of the steady oscillb 
tiom, expressed in terms of normal acceleration per unit 
frictional force as felt a t  the control stick, were made by the 

e 
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F m m  LB.-Bonndaries for complete dmnptng, lnoreasfng oscilhtioru, and dlvergenoa 
p-37.6. 

method of appendix B . The results me presented in figure 20, 
which shorn lines of constant amplitude in the ch,,cha 
plane for an airplane with the center of gravity at the critical 
position referred to in the preceding section. Steady osciUa- ' 
tions will therefor occur throughout the entire region where 
stability &ts in the absence of friction. The amplitude 
is s m d a t  for high values of Chat combined with high 

CONCLUDING REMARKS 
values of a8. 

The stick-free static stability of a conventional airplane 
may be improved by making the elevator floating tendency 
more positive or by mass-unbalancing the elevator control 
system to make the elevator tailheavy. Increasing the 
restoring tendency r h o  has a favorable effect provided the 
airplane is stablo with stick h e d .  If the restoring tendency 
is zero, the stick-free static stability is independent of air- 
plane center-of-gravity position. 

The dynamic stability with fi.ictionless controls depends 
chiefly on the restoring tendency oh6 and on the mass balance 
of the elevator control system. If the elevator control 
system is mass unbalanced (elevator made tailheavy) by an 
offset weight at the control stick and if the restoring tendency 
is too lorn, increasing short-period oscillations may result. 
This condition can be remedied by the use of two additional 
weights-one a t  the elevator making it noseheavy, the other 
at the control stick making the elevator suBciently tailheavy 

that the combined effect gives the elevator the desired amount 
of tailheaviness. 

The addition of viscous friction to the control system will 
prevent dynamic instnbity provided the ahplane center of 
gravity is forward of a criticnl position which is behind the 
aerodynamic center and approaches it as the value of the 
density pmameter p incremes. If the airplane center of 
gravity is behind this critical position, viscous friction will 
have a destabilizing effect, no matter what the hinge- 
moment parameters me. If  the center of gravity is slightly 
ahead of the critical position, viscous friction may be de- 
stabilizing for a limited range of values of viscous friction and 
the hinge-moment parameters. A lorn restoring tendency 
and a high positive floating tendency w i l l  tend to  cause this 
dynamic instability. When p is very large (high altitude), 
this condition of steady oscillations can occur even if the 
center of gravity is a h e d  of the aerodynamic center. 

The presence of solid friction in the control system may 
cause short-period steady oscillations under th0 conditions 
for which viscous friction is destab-. The amplitude of 
the oscillations is proportional to  the amount of friction 
present. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 

LANGLEY FIELD, VA., December By 1943. 
NATIONAL ADVISORY C O ~ ~ E E  FOR AERONATJTICS, 
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APPENDIX A 
EVALUATION OF STABILITY DERIVATTVE8 

Derivative Cb.-The total hinge moment aoting on the 
elovator may be expressed as 

Derivative Um,.-The parameter Om, may be obtained 
from mind-tunnel measuroments or, if the position of the 
aerodynamic center of the complete airplane is known, may 
be calculated by tho formula 

Cm,=- C L i ~ 0 . c .  

Derivatives Om,, and Omd,.-The derivatives CmDa and 
UmD1, mise because of the lag betmeen the change in angle 
of attack at  the wing and the corresponding domwash at 
the tail. It is assumed that the domwash at  any instant t 

depends on the angle of attack at  the instant t-*, the d8er- 

onco being the time required for the air to move from the 
wing to the t d .  If a=f(t), this relat.ion may be expressed 
m 

where 

NOW, 

(At)' .. 

4Vl 

a-At&+-ij-a- . . .] 
or, because LZv -.E- Da and Z = F  P a ,  

and 

The part of the pitching-moment coefficient contributod 
by the tail is 

I, S' 
t a ,T ' s ;b f f '  

c,= - GL 

1 I. s, [a(1-&)+& &--E, lh2 5 &Y . . . 
=-QL'al 2 s, 

The lag effectively introduces derivatives C,,,, C,,,, . . . - 
The h t  two of these derivatives are 

GI 
ln' st GmDa=-CL -- 

fa, 2 s, 

347 
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Derivatives cha, and chsa. -The derivative U h a ,  

C h D a ,  and CbSa may be obtained from 

Derivative C,,.-The pitching moment due to pitching 
is made up of partsIdue to propeller, wing, fuselage, and 
horizontal tail. The contribution of the tail is by f a r  the 
largest and can easily be calculated. 

If the airplane is rotathg with angular velocity e,  the 

increasein angle of attack a t  the tailis L b v  which results 

in an increased lift on the tail given (in coefficient form) by 

e 

The resultant pitching-moment coefficient is 

2La and expressing e as De and - as Zh gives 
C C 

The contribution of the wing depends on the assumed 
axis of rotation (center of gravity) but a fair average value 
mill be obtained by assuming that the center of gravity is 
a t  the wing quarter-chord point. This assumption gives a 
value 

R- C,= -- De 4 

The total pitch&-moment coefficient due to pitching 
therefore is 

Derivative C,,.-The derivative Cma may be measured 
directly in a wind tunnel or may be computed from wind- 
tunnel data on the value of CLta for the horizontal tail by 
mema of the formula . 

Derivative C,,.-The derivative CmDa may be computed 
from 

where and (g)B may be obtained from figure 1 

of reference 11, which is baaed on thin-wing potential-flow 
theory. 

Derivative ch,.-The derivative ChDa is given by 

In the absence of viscous friction in the elevator control 
system, the value of OhDa may be computed from 

where and (g)B may be obtained from figure 1 

of reference 11. 
If a dashpot., which has a damping constant of K pounds 

per foot per second and moves a distance of Q feet per 
radian of elevator deflection, is inserted in tho control 
system, 

The total value of Ohm is the sum of equations (Al) mid 

Derivatives c h a t  and Cb,.-The derivatives Ohat and c h a  

can be calculated by thin-wing-section theory but tho 
results are of doubtful accuracy because of three-dimensional 
and boundary-layer effects. It is therefore best to obtain 
these derivatives from wind-tunnel tests. 

(MI. 



APPENDIX B 
CALCULATION OF NORMAL ACCEXERATION DUE TO OSCULATING ELEVATOR 

The fraction in equation (B1) can be reduced to an ordinary complex number and the modulus of this number is the 
mnsimum amplitude of the steady oscillation. The value can be converted to physical units by the formula 

Normal acceleration per 8- 447- D(ff-e) 4 -- -- 
Stick friction in pounds pS,c,cg a iqChDa 

mhcre Ob,, is the value of elevator dampicg required for the condition of neutral dynamic stability. 
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